# Numpy
# Basic
# Matrix
- M[i,j], to access the item in the ith row and jth column;
- M[i:j,:], to get the all the rows between the ith and j − 1th;
- M[:,i], to get the ith column of M;
dot product
inner product
transpose
Identity Matrix
# np api
np.repeat(n, 3)
np.arange(n)
np.full((3, 3), 1, dtype=bool)
out = np.where(arr % 2 == 1, -1, arr)
np.reshape()
np.repeat(a, 3)
np.tile(a, 3)
np.concatenate
np.vstack
np.hstack
np.r_[a, b]
np.intersect1d(a, b)
- From 'a' remove all of 'b'
np.setdiff1d(a,b)
- Get the positions where elements of a and b match
np.where(a == b)
- get index meeting condition
> Method 1
index = np.where((a >= 5) & (a <= 10))
a[index]
> Method 2:
index = np.where(np.logical_and(a>=5, a<=10))
a[index]
- vectorize functions
pair_max = np.vectorize(maxx, otypes=[float])
- reorder columns
arr[:, [1,0,2]]
- reverse rows
arr[::-1]
- generate random matrix distribution
rand_arr = np.random.randint(low=5, high=10, size=(5,3)) + np.random.random((5,3))
> or
rand_arr = np.random.uniform(5,10, size=(5,3))
- pretty print, scientific notation
np.set_printoptions(precision=3)
np.set_printoptions(suppress=True, precision=6)
np.set_printoptions(threshold=6)
np.set_printoptions(threshold=np.nan)
- keep text inact
iris = np.genfromtxt(url, delimiter=',', dtype='object')
- use columns when import
iris_2d = np.genfromtxt(url, delimiter=',', dtype='float', usecols=[0,1,2,3])
- normalize
Smax, Smin = sepallength.max(), sepallength.min()
S = (sepallength - Smin)/(Smax - Smin)
- softmax
def softmax(x):
"""Compute softmax values for each sets of scores in x.
https://stackoverflow.com/questions/34968722/how-to-implement-the-softmax-function-in-python"""
e_x = np.exp(x - np.max(x))
return e_x / e_x.sum(axis=0)
- percentile
np.percentile(sepallength, q=[5, 95])
- insert random to random index
> Method 1
i, j = np.where(iris_2d)
i, j contain the row numbers and column numbers of 600 elements of iris_x
np.random.seed(100)
iris_2d[np.random.choice((i), 20), np.random.choice((j), 20)] = np.nan
> Method 2
np.random.seed(100)
iris_2d[np.random.randint(150, size=20), np.random.randint(4, size=20)] = np.nan
- Print first 10 rows
print(iris_2d[:10])
- find nan value
print("Number of missing values: \n", np.isnan(iris_2d[:, 0]).sum())
print("Position of missing values: \n", np.where(np.isnan(iris_2d[:, 0])))
- filter
condition = (iris_2d[:, 2] > 1.5) & (iris_2d[:, 0] < 5.0)
iris_2d[condition]
- correlation
np.corrcoef(iris[:, 0], iris[:, 2])[0, 1]
> Solution 2
from scipy.stats.stats import pearsonr
corr, p_value = pearsonr(iris[:, 0], iris[:, 2])
print(corr)
- find unique value
# Extract the species column as an array
species = np.array([row.tolist()[4] for row in iris])
- Get the unique values and the counts
np.unique(species, return_counts=True)
- num to category
> Bin petallength
petal_length_bin = np.digitize(iris[:, 2].astype('float'), [0, 3, 5, 10])
> Map it to respective category
label_map = {1: 'small', 2: 'medium', 3: 'large', 4: np.nan}
petal_length_cat = [label_map[x] for x in petal_length_bin]
- create new columns
> Compute volume
sepallength = iris_2d[:, 0].astype('float')
petallength = iris_2d[:, 2].astype('float')
volume = (np.pi * petallength * (sepallength2))/3
> Introduce new dimension to match iris_2d's
volume = volume[:, np.newaxis]
# Add the new column
out = np.hstack([iris_2d, volume])
- probabilistic sampling
> Get the species column
species = iris[:, 4]
> Approach 1: Generate Probablistically
np.random.seed(100)
a = np.array(['Iris-setosa', 'Iris-versicolor', 'Iris-virginica'])
species_out = np.random.choice(a, 150, p=[0.5, 0.25, 0.25])
# Approach 2: Probablistic Sampling (preferred)
np.random.seed(100)
probs = np.r_[np.linspace(0, 0.500, num=50), np.linspace(0.501, .750, num=50), np.linspace(.751, 1.0, num=50)]
index = np.searchsorted(probs, np.random.random(150))
species_out = species[index]
print(np.unique(species_out, return_counts=True))
- get value grouped by another column
> Get the species and petal length columns
petal_len_setosa = iris[iris[:, 4] == b'Iris-setosa', [2]].astype('float')
> Get the second last value
np.unique(np.sort(petal_len_setosa))[-2]
- sort by column
print(iris[iris[:,0].argsort()][:20])
- find most freq
> Solution:
vals, counts = np.unique(iris[:, 3], return_counts=True)
print(vals[np.argmax(counts)])
- cutoff value
> Solution 1: Using np.clip
np.clip(a, a_min=10, a_max=30)
> Solution 2: Using np.where
print(np.where(a < 10, 10, np.where(a > 30, 30, a)))
- generate one-hot array
def one_hot_encodings(arr):
uniqs = np.unique(arr)
out = np.zeros((arr.shape[0], uniqs.shape[0]))
for i, k in enumerate(arr):
out[i, k-1] = 1
return out
- one_hot_encodings(arr)
array([[ 0., 1., 0.],
[ 0., 0., 1.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 0., 1., 0.],
[ 1., 0., 0.]])
> Method 2:
(arr[:, None] == np.unique(arr)).view(np.int8)
- create category id
> Solution:
output = [np.argwhere(np.unique(species_small) == s).tolist()[0][0] for val in np.unique(species_small) for s in species_small[species_small==val]]
> Solution: For Loop version
output = []
uniqs = np.unique(species_small)
for val in uniqs: # uniq values in group
for s in species_small[species_small==val]: # each element in group
groupid = np.argwhere(uniqs == s).tolist()[0][0] # groupid
output.append(groupid)
print(output)